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Summary

 

On the basis of  the procedure for controlling the spins of  atoms
using circularly polarized evanescent light proposed by Hori

 

et al.

 

 [(1996) Abstracts of  the 1st Asia-Pacific Workshop on
Near-field Optics] we discuss the influence of  boundary condi-
tions on the probability of  spontaneous emission and thus on
the spin polarization efficiency, which was not considered in
the Hori 

 

et al.

 

 study. Using the Carniglia–Mandel mode expan-
sion of  electromagnetic fields, we derive the spontaneous
emission and spin polarization probabilities of  atoms near
a dielectric surface, and show the atom–surface distance
dependence and refractive index dependence. Numerical evalu-
ation for the 6

 

P

 

1/2

 

–6

 

S

 

1/2

 

 transition of  a Cs atom indicates an
increase in the efficiency of  spin polarization by 30%.

 

1. Introduction

 

As a result of  spatial localization and a unique dispersion
relation originating from interaction with matter, optical
near-fields produce intriguing phenomena that cannot be
obtained with propagating far-fields. Some of  these phenomena
have been investigated extensively, both experimentally and
theoretically, and their applicability to nano-photonics and
atom-photonics has been discussed (Ohtsu 

 

et al.

 

, 2002). Spin
control of  atoms, molecules, or quantum dots is another example
that has attracted considerable attention in the scientific com-
munity. In this context, a method for controlling the spin of  an
atomic beam by using circularly polarized evanescent light
whose angular momentum is perpendicular to the propaga-

tion direction has been proposed (Hori 

 

et al.

 

, 1996; Ohdaira

 

et al.

 

, 2001). The authors neglected the dielectric surface effect,
although it is well known that the spontaneous emission rate
of  atoms near a surface is modified. In addition, the polariza-
tion of  emitted photons becomes anisotropic, and their direc-
tional dependence is not negligible when the atoms are very
close to a surface. On the basis of  their proposal, we examined
the dielectric surface effects on spin-control efficiency, with
the help of  Carniglia–Mandel (CM) modes (Carniglia &
Mandel, 1971; Inoue & Hori, 2001), which form a complete,
orthonormal basis set for electromagnetic fields with an
infinite surface boundary. Section 2 briefly outlines the spin-
control method proposed by Hori 

 

et al.

 

 In Section 3, we derive
the spontaneous emission and spin polarization probabilities
of  atoms near a dielectric planar surface, and discuss the
spin-control efficiency, using the example of  caesium atoms.
Conclusions are drawn in Section 4, and the definitions and
useful formulae of  the CM modes are presented in the Appendix.

 

2. Spin-control method by optical near-fields

 

Following Hori 

 

et al.

 

 (1996), we outline a method that can be
used to align the spins of  atoms injected close to a dielectric
surface. Suppose that the media below and above the plane
have refractive indexes 

 

n

 

 and 1, respectively. Two 

 

s

 

-polarized
plane waves with amplitude 

 

E

 

0

 

, monochromatic frequency 

 

ω

 

,
and wave number 

 

k

 

 = 

 

n

 

ω

 

 /

 

c

 

 

 

≡

 

 

 

nK

 

 are incident from the dielec-
tric side as 

 

E

 

0

 

e

 

x

 

e

 

ik

 

(

 

y

 

sin

 

θ

 

+

 

z

 

cos

 

θ

 

)

 

−

 

i

 

ω

 

t

 

 and 

 

E
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e

 

y
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ik
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x

 

sin

 

θ

 

+

 

z

 

cos

 

θ

 

)

 

−

 

i

 

ω

 

t

 

, where 

 

e

 

x

 

and 

 

e

 

y

 

 are unit polarization vectors. If  the incident angle 

 

θ

 

exceeds the critical angle 

 

θ

 

c

 

, two evanescent waves are gener-
ated above the surface. If  the condition

(1)
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is satisfied, the combined waves are converted into a circularly
polarized evanescent wave as

, (2)

. (3)

Then, the stimulated absorption probability of  atoms moving
with velocity 

 

V

 

 along the line given by Eq. (1) can be written as

, (4)

where 

 

Q

 

z

 

 is the 

 

z

 

 component of  the position of  the centre of
mass of  each atom whose resonance frequency, initial and
final states are denoted as 

 

ω

 

fi

 

, |

 

i

 

〉

 

, and |

 

f

 

〉

 

, respectively, and 

 

T

 

+

 

 is

the spherical harmonic tensor that increases the 

 

z

 

 component
of  the total angular momentum of  each atom by one. Let the
initial state |

 

i

 

〉

 

 be |

 

S

 

1/2

 

〉

 

 for an alkali atom; then the valence
electron is either in the spin-up state (

 

J

 

,

 

 M

 

) = (1/2, 1/2) or the
spin-down state (

 

J

 

,

 

 M

 

) = (1/2, 

 

−

 

1/2). The final state |

 

f

 

〉

 

 can be
either |

 

P

 

1/2

 

〉

 

 or |

 

P

 

3/2

 

〉

 

. However, we can selectively eliminate
the |

 

P

 

3/2

 

〉

 

 state by red detuning, and all the atoms in the spin-
down state (

 

J

 

,

 

 M

 

) = (1/2, 

 

−

 

1/2) are excited to the |

 

P

 

1/2

 

〉

 

 state
by stimulated absorption, whereas all the atoms in the spin-up
state (

 

J

 

,

 

 M

 

) = (1/2, 1/2) remain in the same state. Because
atoms in the |

 

P

 

1/2

 

〉

 

 state relax to either the (

 

J

 

,

 

 M

 

) = (1/2, 1/2)
or (

 

J

 

,

 

 M

 

) = (1/2, 

 

−

 

1/2) state by spontaneous emission, repeti-
tions of  the pumping process lead to spin polarization of  the
final atoms, as depicted in Fig. 1. When the emitted photons
are unpolarized, i.e. |

 

e

 

x

 

|

 

2

 

 = |

 

e

 

y

 

|

 

2

 

 = |

 

e

 

z

 

|

 

2

 

, the ratio of  relaxation
probability 

 

w

 

up

 

 to 

 

w

 

down

 

 is given as

Etr
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Fig. 1. Schematic energy levels and transition
processes. Repeated pumping and relaxation processes
result in the accumulation of  the spin-up atoms.
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, (5)

where 

 

w

 

up

 

 means the relaxation probability from the |

 

P

 

1/2

 

〉

 

state to the spin-up state, and 

 

w

 

down

 

 stands for the relaxation
probability from the |

 

P

 

1/2

 

〉

 

 state to the spin-down state. This
indicates that one can efficiently align the spins of  atoms as the
ratio 

 

R

 

 increases.

 

3. Spontaneous emission under planar boundary conditions

 

In order to examine the effects of  a planar boundary on the
transition probabilities 

 

w

 

up

 

 and 

 

w

 

down

 

, and their ratio 

 

R

 

, dis-
cussed above, we use the CM modes (see Appendix), which
form a complete, orthonormal basis set for the quantization of
electromagnetic fields with an infinite planar boundary. Start-
ing with the following total Hamiltonian of  the system,

 

H

 

 = 

 

H

 

0

 

 + 

 

H

 

′

 

, (6)

 

H

 

0

 

 = 

 

H

 

elec

 

 + 

 

H

 

rad

 

 + 

 

T

 

, (7)

, (8)

the spontaneous emission rate per unit time is investigated.
Here 

 

H

 

0

 

 is the unperturbed part, and consists of  three parts,

 

H

 

elec

 

, 

 

H

 

rad

 

 and 

 

T, which describe a valence electron, the elec-
tromagnetic fields expressed as Eq. (A9) in terms of  the CM
modes, and the translational motion of  an atom, respectively.
The interaction of  the valence electron with the electromag-
netic fields H′ is given by Eq. (8), where e, m, p and A(Q, t) rep-
resent the electric charge, mass, momentum of  the electron,
and the vector potential at position Q of  the centre of  mass of
the atom at time t, respectively. The explicit form of  the vector
potential is given as Eq. (A8) in the Appendix.

Using the time-dependent perturbation theory with respect
to H′  in Eq. (8), we can obtain the desired emission rate as

, (9)

where the final state |f 〉 is assigned to state |β, 1k,εεεε〉 consisting
of  atomic state β and one photon state with wave vector k and
polarization vector εεεε, whereas |ψ(t)〉 is a time-evolved state
from the initial state |i〉 = |α, vac〉 constructed from atomic
state α and no photon state (vacuum), and the atomic reson-
ance frequency is denoted as ωβ,α. Note that the explicit form of
εεεεL(R)(k, λ, r) in Eq. (A4) is used as well as the conversion from

〈β|e · p|α〉 to 〈β|e · r|α〉, and that the Doppler shift due to
atomic motion at velocity V is neglected.

For further evaluation, the following four cases of  wk,εεεε in
Eq. (9) with respect to emitted photons are considered:

As illustrated in Fig. 2, homogeneous waves are described by
the R-mode, whereas evanescent waves are expressed in terms
of  the L-mode. From this classification, we can obtain the
directional-dependent emission rate as

, (10)

, (11)

, (12)

, (13)

, (14)

, (15)

, (16)

, (17)

(18)

where θ′ represents the incident or transmitted angle on the

vacuum side, while  and  denote

the Clebsh–Gordan coefficient and the reduced matrix ele-
ment, respectively. The notation for each expression on the left
hand side of  Eqs (10–17) is summarized in Table 1. Cor-
responding to the probability ratio R defined in Eq. (5), we
integrate each directional-dependent emission rate in Eqs
(10–17) with respect to the emission direction and sum them
regarding the polarization as
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Fig. 2. Photon emission from an atom. The R-mode corresponds to homogeneous waves emitted by the atom, and the L-mode corresponds to evanescent
waves. Integration range of  θ′ for the R-mode varies from 0 to π/2 and θ for the L-mode ranges from θc to π/2.

Fig. 3. Transition probability ratio R(n, z) = wup/wdown as a function of  (a) atom–surface distance and (b) refractive index. We assume n = 1.5 in (a), and z =
10 nm in (b).

Table 1: Transition probabilities to the spin-up and spin-down states depending on the polarization for the R–mode and L–mode.
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,

(19)

. (20)

Here the integration range of  θ′ for the R-mode ranges from
0 to π/2, whereas θ for the L-mode ranges from θc to π/2.
The ratio R(n, z) = wup/wdown with the refractive index n and
the atom–surface distance z gives the final result, including the
surface boundary effects.

As an example, we consider the transition from the 6P1/2

level to the 6S1/2 level of  a Cs atom, which has a resonance
energy of  ≈ 1.38 eV. Figure 3(a) shows the atom–surface dis-
tance dependence of  the ratio R(n, z) calculated from Eqs (19
and 20). When the refractive index n is taken as 1.5, it follows
from the figure that the ratio is larger than the free space value
as the atoms come close to the surface, i.e. Cs atoms are more
efficiently converted to the spin-up state. In addition, the ratio
becomes 1/2 in Eq. (5) at the limit of  an infinite atom–surface
distance. Figure 3(b) shows the refractive index dependence of
the ratio R(n, z) when the atom–surface distance z is taken as
10 nm. We find that R(n, z) has a maximum value at n ~ 1.35
and is enhanced by 30% compared with the value of  1/2 given
in Eq. (5). This implies that the surface effects increase the
spontaneous emission rate to the spin-up state. Although it is
not shown in the figure, this result remains valid if  the atom–
surface distance is < 10 nm.

The results can be qualitatively understood as follows. The
relaxation rate to the spin-up or spin-down state is approxim-
ated by

.
(21)

With the help of  the Wigner–Eckart theorem, we obtain the
following relation

. (22)

Thus, we can approximate the ratio R as

. (23)

The increase in the relaxation rate to the spin-up state comes
from the increase in |ez|, i.e. the z-component of  the electro-

magnetic field, which can be produced by the image dipole due
to the planar surface effect.

4. Conclusions

In terms of  the CM mode expansion of  electromagnetic fields,
we investigated the effects of  a dielectric planar surface on the
spin-control method proposed by Hori et al. (1996). Using the
derived formulae, we showed the dependence of  the relaxation
probability ratio R(n, z) = wup/wdown on the atom–surface dis-
tance and the refractive index for the 6P1/2–6S1/2 levels of  a Cs
atom numerically. The main result indicates that the ratio has a
maximum value at n ~ 1.35, which is enhanced by 30% over the
free space value. This means that the surface effects increase
the spontaneous emission rate to the spin-up state. Therefore,
one can efficiently align the spins of  atoms in repeated laser
cycles of  state-selective excitation and spontaneous emission.

Inoue & Hori (2001) recently discussed the spontaneous
emission of  atoms near a dielectric surface, using the CM
modes, and showed the quantum interference effects on the
angular dependence of  the spontaneous emission with the
help of  the detector modes. It will be interesting to include
these quantum effects in our studies in the near future.
Because the CM modes form a basis set of  the quantization of
the electromagnetic fields, we can discuss the quantum prop-
erties of  the evanescent field such as the possibility of  the
squeezed state of  the evanescent field.

It will also be interesting to find a normal mode for other
types of  boundary, such as a fibre tip, and to discuss atom
manipulation using such a probe (Kobayashi et al., 2001), in
the same manner as the CM mode for a planar boundary.
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Appendix

Here we present some useful expressions related to the CM 
mode of  electromagnetic fields. In order to describe the 
electromagnetic field with a planar interface, we use the 
solutions εεεεL and εεεεR of  the Helmholtz equation

(A1)

where λ stands for s- or p-polarization. In addition, the suffix R
indicates the R-mode, in which plane waves are incident from
the vacuum side, and L designates the L-mode, in which plane
waves are incident from the dielectric side (see Fig. A1). From
incident εεεε I, reflected εεεε R, and transmitted εεεε T waves as solutions
of  Eq. (A1), the CM mode functions are defined as

, (A2)

. (A3)

Because these mode functions form a complete orthonormal
set for transverse fields (Bialynicki-Birula & Brojan, 1972;
Carniglia & Mandel, 1971), we can expand an arbitrary elec-
tric field using the CM modes as follows:

, (A4)

where û and v obey the following commutation relations:

, (A5)

, (A6)

and the CM mode functions are described as

, (A7)

with the polarization vector e(λ) and Fresnel’s coefficient aR(L)(λ).
Using the relation E = −∂A/∂t for Eq. (A4), we can also express
the vector potential in terms of  the CM mode as

. (A8)

Owing to the relation ∇ × E = −∂B/∂t, analogous formulas hold
for magnetic fields, with the annihilation operators û and v in
common. Therefore, the Hamiltonian for the electromagnetic
field is described by the CM modes as:

. (A9)

It follows that the CM modes form normal modes for the pla-
nar boundary condition and û, û† and v, v† are the annihilation
and creation operators for L-mode and R-mode photons,
respectively.

Fig. A1. CM triplet modes: the R-mode (left) and the L-mode (right). Only
the L-mode includes evanescent waves.
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